

GRIDS: Rechargeable Zn – MnO₂ Battery Developments

Low Cost Storage for the Grid Scale

The City University of New York, Energy Institute 160 Convent Ave, New York, NY 10031

Email: banerjee@che.ccny.cuny.edu

PI: Sanjoy Banerjee

Presenter: Damon Turney

Email:dturney@ccny.cuny.edu

Cathode active material: EMD γ -MnO₂ Anode active material: Zn metal

Zinc (Zn) and manganese dioxide (MnO₂)

- Inexpensive
- Safe
- Water compatible
- Abundant

Electrolytic MnO_2 (EMD, γ - MnO_2) is reversibly converted to MnOOH during its initial stage of discharge. By cycling in a well-controlled range of cell potential and depth-of-discharge, cycle life of greater than 3,000 is achieved. By controlling zinc material migration, shape-change and zinc dendrites are avoided.

Investment and Time

EMD MnO₂ Cathode: Long Cycle Life Demonstration, Failure Studies

Zn-MnO₂ Research Cell ~200 Battery Tester Channels

Cycle Life Demonstrated > 3,000

Dissection Analysis Shows Formation of Zinc Surface Layers

1-D Computational Modeling Film Theory Predictions

Pasted Zinc Anode: Design of Experiment Results, Failure Studies

Pre-cycling and Cycling Metrics: Baseline vs Improved Designs

- Porosity, Permeability, Tortuosity
- Wettability
- 4-Point Conductivity
- Shape Change, Zinc Migration
- Anode Energy Storage Efficiency
- Additives: Paste and Electrolyte
- Separators

Baseline

aseline Improved Design

Control of Zinc Shape Change

In-Operando X-Ray Observations of Zinc Paste Degradation at Brookhaven National Laboratory, NSLS

Before Cycling
20 um

After Cycling Same Location

We would like to thank ARPA-E for financial support under award number DE-AR0000150